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SUMMARY

A three-dlmensional time dependent Navler-Stokes analysis was applied to the

rotor blade vortex interaction problem. The numerical procedure is an iterative

implicit procedure using three point central differences to represent spatial

derivatives. A series of calculations were made to determine the time steps,

pseudo-tlme steps, iterations, artificial dissipation level, etc. required to

maintain a nondisslpative vortex. Results show the chosen method to have

excellent non-disslpative properties provided the correct parameters are chosen.

This study was used to set parameters for both two- and three-dlmenslonal blade

vortex interaction studies. The two-dimensional study considered the interaction

between a vortex and a NACAO012 airfoil. The results showed the detailed physics

during the interaction including the pressure pulse propagating from the blade.

The slmul, ted flow physics was qualitatively similar to that experimentally

observed. The 2-D BVl phenomena is the result of the buildup and violent

collapse of the shock waves and local supersonic pockets on the blade surfaces.

The resulting pressure pulse build-up appears to be centered at the blade leading

edge. The three-dimensional interaction study considered the case of a vortex at

20 ° incidence to the blade leading edge. Although the qualitative results were

similar to that of the two-dimensional interaction, details clearly showed the

three-dlmenslonal nature of the interaction process. __

I. INTRODUCTION

The interaction of concentrated vortices with blades induces unsteady

aerodynamic loading resp6nsible for blade vibrations, aerQelastic instabilities,

and impulsive noise. The effects of blade-vortex interactio n (BVI) are especially

significant in the transonic flow regime, in which the strength and position of

the shock waves are sensitive to small changes in the flow parameters. Due to its

common occurrence in many aerodynamic applications, BVI has been a subject of many

experimental, analytic and computational investigations. Recent examples of

experimental investigations include the work of Caradonna and his colleagues

(1984, 1988) and Booth and Yu (1986). Analytical studies include those of Panares

(1987), Lee and Smith (1987) and Poling, Dadone and Telionls (1989).

Investigations based upon numerical simulations include the two-dlmenslonal full



Navier-Stokes simulations of Sankar and Tang (1985), the two-dimenslonal thin

layer Navler-Stokes simulations of Srinlvasan and McCroskey (1987), $rlnlvasan,

McCroskey and Baeder (1986) and Rai (1987), and the three-dimensional thin layer

Navler-Stokes simulation of Srinivasan and McCroskey (1989).

The BVI problem can be viewed as an unsteady, three-dlmenslonal close

encounter of curved vortex filaments, at arbitrary intersection angles, with a

blade that is in combined translational and rotational motion. Under certain

operating conditions, the blade can encounter a vortex that is almost parallel to

itself. Such an encounter is essentially two-dlmenslonal but unsteady, and has

been the focus of many BVI investigations. However, in general the blade vortex

interaction is a three-dlmenslonal phenomenon. Both two-dimenslonal and three-

dimensional interactions are considered here.

At the present time, a key problem in computing flows containing concentrated

vortices is the ability to preserve and convect these vortices in a finite-

difference or flnlte-volume grid without false numerical diffusion due to

truncation error, artificial dissipation and turbulence modelling. Various

investigators have dealt with the vortex preservation problem in different ways.

One approach, the prescribed vortex approach (e.g. Srlnlvasan and McCroskey, 1987

and 1989) assumes a background flow field consisting of a specified vortex and

solves the governing partial differential equations for the difference between the

full dependent variable field and that of the specified vortex. Under this

approach the numerical diffusion is applied only to that part of the flow field

which represents the perturbation from the isolated vortex flow field. A

conceptually similar approach is taken by Sankar and Tang (1985) who solve the

Navler-Stokes equations for the usual dependent variables; i.e., do not use a

perturbation approach but modify the numerical dissipative operator to act on the

difference between the instantaneous total field values and some presumed vortex

field values, thereby removing a large part of the spurious dissipation of the

vortex structure. More recently, strong BVI problems were solved by using a

flfth-order accurate upwlnd-blased scheme without employing any vortex

preservation techniques (Ral, 1987).

In the present work, the ensemble-averaged, tlme-dependent Navler-Stokes

equations are solved on a body-fitted grid around a NACAO012 airfoil in two and

three dimensions to study strong interaction of a vortex with a stationary blade.

The Navler-Stokes equations are solved by using an Iteratlve implicit finite-

difference scheme with second order spatial and temporal accuracies. Furthermore,



simple vortex preservation techniques are used to minimize the amount of spurious

numerical dissipation and eddy viscosity caused by the presence of the vortex

during its convective motion towards the leading edge of the blade. In terms of

spatial differencing, the present study employs three-polnt central differences

with adjustable dissipation terms. An alternative approach is to use various

upwind differencing schemes in transformed coordinates. For example, Rai (1987)

has used first- and second-order upwind differences and also flfth-order

upwlnd-blased differences to study blade vortex interactions. Although

hlgher-order centered and upwind schemes can be more accurate, the order of

accuracy refers to transformed coordinate variables. The high order schemes are

usually flrst-order accurate in physical space variables for general non-unlform

grids. Centered schemes can be made equivalent to upwind schemes by using special

forms of dissipation with particular choices of dissipation parameters, as

discussed in Pulliam (1985), Yoon and Kwak (1988) and Briley, Govindan and

McDonald (1990).

One attraction of the upwind schems is that they propagate waves according to

local characteristic behavior (in a one-dimensional sense). This is offset

somewhat by complexity and the use of expanded grid molecules for higher order

upwind schemes, which complicates their use near boundaries. An upwind approach

can also be used to advantage in constructing special schemes for capturing strong

shocks. Central-difference schemes also approximate local physics correctly for

smooth flows, but require special treatment of (extraneous) boundary conditions to

avoid error due to boundary conditions which conflict with characteristic behavior

at boundaries.

In our experience, the present scheme is more accurate than a first-order

upwind scheme, and has accuracy comparable to the higher-order upwind schemes for

general non-uniform grids. The present scheme also has a three-polnt bandwidth

and is simple and economical. The simple artificial dissipation approach used

here does not require assumptions regarding the velocity field associated with the

prescribed vortex approach used by some other investigators, e.g. Srlnivasan et

al. (1989). Finally, the main focus of the present effort is a three-dlmenslonal

simulation based upon the full Navier-Stokes equations whereas the previous

three-dlmenslonal simulations, Srinivasan et al. (1989), are based upon a solution

of the thin layer equations.

The present effort proceeds in three separate steps. First consideration is

given to the isolated vortex to develop a run protocol which has suitable vortex



preservation properties. Vortex preservation is necessary for viable two- and/or

three-dlmenslonal simulations. Secondly, a two-dlmenslonal, transonic blade

vortex interaction simulation is made. This allows a qualitative assessment prior

to the three-dlmensional interaction. The third portion of the program is the

three-dimenslonal blade vortex interaction simulation .

II. ANALYSIS

Governing Equations and Solution Algorithm

Prior to discussing the results a discussion of the governing equations and

numerical approach is appropriate. As previously stated, the present approach

solves the full ensemble-averaged Navler-Stokes equations without any shear layer

assumption. The approach uses second-order spatial differencing and a

second-order artificial dissipation model which does not require any assumption

regarding the velocity field associated with the vortex. The equations are:

Continuity

Op

a_ + V.pU = 0 (I)

Momentum

ap___v+ v. (puu) =-vP + v. (_=+ _T)
Ot

(2)

Energy

DP
8p_ + V. (pIIh) _ --v. (Q + QT) + _ + $ + p(at

(3)

where p is density, U is velocity, P is pressure, _ is the molecular stress

tensor, zT is the turbulent stress tensor, h is enthalpy, Q is the mean heat flux

vector, QT is the turbulent heat flux vector, • is the mean flow dissipation rate

and ( is the turbulence energy dissipation rate.
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In regard to the numerical method, the basic scheme used is a Linearlzed Block

Implicit (LBI) ADI procedure of Briley and McDonald (1977, 1980). The splitting

error and the linearization error associated with this basic scheme are removed by

introducing an inner ADI iterative procedure at each time step. In brief, the

procedure adds terms @p/aT, @pU/@T and aph/aT to the continuity, momentum and

energy equations, Eqs. (i) - (3), respectively. Three point central differences

are used to represent spatial derivatives and, unless specified otherwise, three

point backward time differencing is used to represent temporal differences leading

to a second order temporal technique. The spatial accuracy is second order except

for the use of numerical dissipation which is discussed later. The equations,

including the a( )/@T terms are solved by the LBI technique in a manner analogous

to that used by Rai (1987). On convergence of the inner iteration the scheme

becomes a fully implicit nonlinear backward time difference scheme. Extensive

tests have been made on the most effective choice of inner iterations and physical

time steps and these tests are discussed subsequently.

Artificial Dissipation and Turbulence Model

When calculating high Reynolds number flows using centered spatial

differencing, some artificial dissipation is needed to maintain numerical

stability and to suppress spurious oscillations in the numerical results.

Such "artificial dissipation" could be added via the spatial differencing

formulation (e.g., one-sided difference approximations for first derivatives) or

by explicitly adding an additional dissipative term. The present effort utilizes

the latter approach. When an additional term is explicitly added, the physical

approximation being made is usually clearer than when dissipative mechanisms are

contained within numerical truncation errors, and further, explicit addition of an

artificial dissipation term allows greater control over the amount of nonphysical

dissipation being added. Obviously, the most desirable technique would add only

enough dissipation to suppress oscillations without deteriorating solution

accuracy. Various methods of adding artificial dissipation were investigated by

Shamroth et al. (1982), and these were evaluated in the context of a model

one-dlmenslonal problem containing a shock with a known analytic solution

(one-dimensional flow with heat transfer). The methods considered included

second-order dissipation, fourth-order dissipation and pressure dissipation

techniques.



As a result of this investigation, It was concluded that for nearly normal

shocks such as that expected in this study a second-order anisotropic artificial

dissipation formulation suppressed spatial oscillations while maintaining solution

accuracy, and could be used to capture shocks successfully. In this formulation,

the terms

(pn_id a_ )
a x, x i a x i

are added to the governing equations where _ = u i for the xi-momentum equation and

= p for the continuity equation, respectively. The exponent, n, is zero for the

continuity equation and unity for the momentum equations. The dissipation

coefficient, dx_, is determined as follows: the general equation without

addition of any artificial dissipation has an x_-directlon convective term of the

form aa@/ax i and an xl-direction diffusion term of the form a(ba_/ax±)/ax i. The

diffusive term is expanded

[bali ba 2_
a L_-_ij/axi -- _ +

ab a_

ax i ax i
(4)

and then a local cell Reynolds number, ReAxi, is defined for the xi-direction by

I ab IReAx i = a -- a_i Axi/b (5)

where b is the total effective viscosity, including both laminar and turbulent

contributions, and Ax i is the grid spacing. The numerical dissipation coeffic-

ient, dxl, is nonnegative and is chosen as the larger of zero and the local

quantity

#e (°x iReA x_l ) (6)

The dissipation parameter Oxi , is a specified constant and represents the inverse

of the cell Reynolds number below which no artificial dissipation is added. The

maximum value of the dissipation, Oxl = 0.5, corresponds approximately to that

obtained by using one-sided differencing throughout. A term of the form

a(pn-ldxia_/axi)/axi is added to each equation.

The present results have been obtained with a mixing length turbulence model,

and an !sotroplc eddy viscosity. This model assumes the existence of a mixing



length, _, and then relates an eddy viscosity, _T, to the mixing length by

axj (7)

For flow regions upstream of the trailing edge where the flow is attached, the

mixing length is determined by the usual boundary layer formulation

= _yD _ < _az (8)

where K is the von-Karman constant, D is a sublayer damping factor and _max is

taken as 0.09 6, where 6 is the boundary layer thickness. The van Driest damping

factor is defined as

D = (i -- e--Y +/26) (9)

where y+ = yu_/v is the dimensionless coordinate normal to the wall.

When the mixing length formulation is used in a boundary layer environment, 6

is usually taken as the location where u/u e = 0.99. However, this definition

assumes the existence of an outer portion of the flow where u e is independent of

distance from the wall, and assumes that the location where u e becomes independent

of distance from the wall marks the end of the viscous region. In an airfoil

Navler-Stokes calculation, no such clear flow division occurs as even in the

nominally invlscld region there are velocity gradients due to potential flow

effects. Therefore, the boundary layer thickness, 6, is set by first determining

Umax, the maximum velocity at each given streamwlse station, and then setting 6

using

6 = 2.0Y(U/Uma x = k,) (i0)

i.e., 6 is taken empirically as twice the distance from the wall to the location

where u/uma x = k,. In the present calculations, k, was set to 0.90.

This boundary layer thickness specification is not suitable in the airfoil

leading edge stagnation regions or near the rounded trailing edges where two small

separation regions form, hence special treatment is required in these areas. The

points 1 and 2 shown in region I of Fig. 1 are at a specified arc-length (As, and

As2) from the nominal stagnation point, and in the present calculation As, and



As2 were approximately 5%of axial chord. In region I, a value of & is defined

using a quadratic fit between the computed values 6, and 6 2 and a specified

minimum value 6mi , assumed at the stagnation point. The points 3 and 4 shown in

region II of Fig. ! are at a specified arc-length (As s and As4) from the trailing

edge point, and in the present calculations As s and As 4 were approximately 6% of

axial chord. Downstream of points 3 and 4, the value of 6 is set to 6 s and 64,

respectively. In the wake region an assumed spreading rate is used.

Obviously, both artificial dissipation and turbulence viscosity are sources of

false diffusion and distortion of a vortex convected in a flnite-dlfference grid.

In the present work, the effects of artificial dissipation on the vortex structure

is minimized by specifying a proper value of the adjustable parameter (Oxi) which

controls the amount of added dissipation, and for the present BVI study this value

was determined from a separate set of calculations in which the effects of this

parameter's magnitude on the preservation of a free vortex convected over a long

distance are examined. To minimize the spurious diffusion of vortex structure due

to the turbulence model, the turbulent viscosity is set to be zero in a region

ranging between the inflow section to a section which is approximately one chord

length upstream of the leading edge of the blade. The turbulent viscosity then

gradually blends into the values provided by the employed mixing length model.

The numerical results obtained show these simple techniques to be effective in

preserving the vortex during its convection towards the blade.

Grid Construction

During the course of this effort calculations were run with several types of

grids. The BVI calculations require a grid which extends far upstream (perhaps

five chords) to a station where the vortex is placed initially. Furthermore, it

is important that the vortex be convected to the blade with minimum distortion or

dissipation due to numerical effects. This demand argues strongly for an

orthogonal grid upstream of the blade since significant non-orthogonality leads to

a higher degree of numerical error and is expected to distort and dissipate the

vortex in a physically unrealistic manner. With these considerations in mind, SRA

has developed a "four corner" grid, a sketch of which is shown in Fig. 2. This

grid was generated using the EAGLE code of Thompson (1987). This grid can be

easily extended to far upstream without introducing excessive grid

non-orthogonality in the upstream region. On the other hand, if a "C"-grid is



used such an extension to the far upstream would present considerable grid

non-orthogonallty in the far upstream region. Therefore a "four corner" grid is

the grid of choice for the desired simulation, and is used here.

As can be seen in Fig. 2, the points A, B, C, and D are points with singular

metric information. However, they are on the boundary and the change in

coordinate llne direction at these points can be kept to 45 ° as compared to a

change of 90 ° for a standard "H"-grid. This decrease in coordinate direction rate

of change should make the four corner grid less susceptible to numerical error in

the vicinity of the singular boundary points.

Figure 3 presents a computer generated plot of the overall grid for a NACA0012

airfoil. Detailed grid distributions in the leading edge and trailing edge

regions are shown in Figs. 4 and 5. A total of 12,000 grid points are used with

high resolution both near the blade and in the vicinity of the blade leading

and trailing edges. Typical resoluti6n at the blade surface is 3.0 x 10 .4 chords.

As previously discussed, the major disadvantage with the conventional "H"-type

grid is the presence of the singular points in the leading edge and the trailing

edge, where the branch cut lines meet the airfoil body and the grid lines change

their slopes at very sharp (almost ninety degrees) angles. The severity of this

problem is reduced for the "four corner" grid by changing the location of the

points at which branch cut lines meet the airfoil body to positions away from the

center llne so that these lines can connect to airfoil with a 45 ° angle, as shown

in Fig. 4.

A calculation was performed for the isolated airfoil given in Fig. 3 at zero

incidence. The free stream Mach number and the Reynolds number used for this

calculation were 0.3 and 1.0xl04, respectively. The calculation was continued

until an asymptotic steady solution was obtained. The surface pressure

distribution at such a steady state is shown in Fig. 6 which qualitatlv_ly

demonstrates the typical behavior of the NACA 0012 airfoil. The pressure

distribution, for the same type of airfoil, reported by Mehta (1977) also is given

in Fig. 6 for comparison. The results are in reasonable agreement with some

moderate difference in the suction peak which may be attributable to the four

corner grid. The contours of streamwlse velocity, u, and transverse velocity, v,

are given in Figs. 7-10. The major item to be noted in Figs. 7-10 are the smooth

dependent variable fields which occur even in the presence of the coordinate

singularities. This computation is a demonstration case for an isolated airfoil

with a four corner grid. Comparisons against data for a variety of cases with an



earlier version of the code using a C-grid are given by Shamroth (1979 and 1985).

In general, the comparisons both for pressure distribution and velocity

distribution in the boundary layer showed good agreement with data.

Boundary Conditions

The authors' experience in solving Navler-Stokes equations has indicated the

important role which correctly modeled boundary conditions play in determining

accurate solutions and rapid numerical convergence. The present approach follows

that of Briley, Buggeln and McDonald (1985). In brief, this approach sets total

pressure and flow angle at the upstream inflow boundary, boundary EH of Fig. 2 and

static pressure at the downstream outflow boundary, boundary HILE of Fig. 2.

These represent the physical boundary conditions for the governing set of

differential equations. In addition, the second derivative of pressure is set to

zero at the upstream boundary, and second derivatives of all velocity components

are set to zero at the downstream boundary. On the airfoil surface, no-sllp

conditions are applied. These are applied with sublayer resolution; wall

functions are not used, as the first grid point off the wall is within the

sublayer. In addition, the wall normal pressure gradient is set to zero. These

conditions suffice for two-dimensional flow. For three-dlmenslonal flow, as will

be discussed later, symmetry conditions were set on the spanwlse boundaries.

III. ISOLATED VORTEX STUDY

The first study of the present effort is an isolated vortex study aimed at

developing a computational protocol which would preserve the vortex strength and

shape as it is convected downstream. The present study uses three-point centered

spatial differences as opposed to five-point upwind differences which is

potentially more efficient and uses a numerical dissipation scheme which does not

require any assumptions on the location or distribution of the velocity field

associated with the vortex. However, prior to performing either two-dimensional

or three-dimensional blade vortex interaction studies it is necessary to determine

a run protocol which will preserve the vortex. If a numerical procedure does not

preserve an isolated vortex, this same procedure can not be used for the blade

vortex interaction study since non-physlcal dissipation will occur prior to the

I0



interaction processand the process will be based upon a vortex of artificially low

strength and large extent.

The vortex preservation test for an isolated vortex was used by Rai (1987) as

a measure to assess the time accuracy of different numerical schemes. In this

test, the flow associated with a Lamb-type vortex convecting in a freestream is

calculated. The pressure field associated with such a vortex is a minimum at the

vortex center and increases asymptotically to the freestream value with distance

from the vortex center. A dissipative scheme is incapable of maintaining the

minimum value of the pressure at the core of the vortex at its original value;

instead, the pressure at the center increases continually as the vortex convects

with the flow. In the absence of any physical viscosity (Euler equations) this

change in pressure at the center of the vortex represents numerically induced

vortex decay. Therefore, a good measure of the vortex preserving capability is

the core _ressure. Rai reported the results of a series of calculations using a

conventional second-order-accurate, central-difference scheme (the Beam-Warming

scheme) and an upwind biased, flfth-order scheme. Variation of vortex core

pressure as a function of the number of core radii traveled by a vortex, as

reported by Ral, is given in Fig. ii. Although the grid spacing in the vortex

path was given, the overall number of grid points and the value of CFL used for

these calculations are not reported. Under the present program a similar approach

of monitoring the vortex core pressure as the vortex convects downstream was

adopted to measure the time accuracy of the SRA Navier-Stokes code. A series of

calculations were performed to assess the vortex preservation capabilities of the

current numerical procedure and to indicate areas where refinement would be

required. Based on the results of these calculations, the code was further

developed to enhance the features required for the blade vortex interaction (BVI)

study. The BVI investigation may require considerable computer resources. This

is due to the large physical domain needed to avoid boundary effects and to the

very fine mesh required to resolve flow details. Calculations were performed to

study the effects of the physical boundary distances, grid spacing, artificial

viscosity, initial vortex strength, boundary conditions and time iterations to

optimize the use of the computer resources as a prelude to the actual BVI

simulations.

II



Computational Grids

Three major different types of grids were used for the free vortex

calculations:

i)

2)

Type "A" grid - is a rectangular grid that is 52.5 x 7.5 radii in a length to

width with equal spacing in the x- and y-directions. The physical domain and

the trajectory of the vortex path from its initiation to 45 radii of travel

are shown in Fig. 12a. The grid spacing for this grid is bx = by = 1/4, the

core radius of vortex being 1,0. A portion of the grid is shown in Fig. 12b,

Type "B" grid - is identical to the type "A" grid except for spacing. The

spacing used for this grid is bx = by = 1/8. The °'A" and "B" grids will be

used to demonstrate the effect of the grid density on the vortex preservation

characteristics of the scheme.

3) Type "C" Grid - is shown in Fig. 13. Equal spacing (bx = y = 1/4) is used in

the central region containing the vortex path and a stretched grid is used to

extend the physical domain to the far field. The boundaries of the grid are

245 x 200 radii in length to width, the core radius of the vortex being I.O.

The boundaries of the equally spaced grid region, the overall boundaries and

the vortex path are shown in Fig. 14. In contrast to grid types "A" and "B",

the boundaries of the type "C" grid are considerably farther from the vortex

path than the type "A" or "B" grid; calculations performed on this grid are

intended to demonstrate the effect of the boundary extents.

Initia$ Conditions, Calculation P_ocedures

Initializations used for all the calculations are the same. With respect to a

coordinate system fixed at the vortex center, the cylindrical velocity component

of the vortex used is given by:

F r 2
(11)

V8 ----2_r " r 2 + a 2

The pressure and density for the vortex flow are obtained as below:

12



The r momentumequation gives

2
d__P= P_IZ
dr r

(12)

The energy equation yields

2

p " • p
V 2

(13)

From Eq. (12) and Eq. (13)

2
dp vo 1 p=O

Eq. (14) is a first order ordinary differential equation.

(14), the analytical solution of p is

p = p=exp(f)

(14)

From Eqs. (ii) and

(15)

where f is

f .o[tan.r.r' B]n]J4a 2 -- B 2' [J4a 2 _B 21 --

(16)

where

U 2

D = _ • P_
(17)

and

B = 2a 7-1 D (18)

The temperature is then given by the equation of state. It is noted here that the

exact solution of the Lamb-type vortex satisfies the Euler equations. Options

13



were added to the code to solve the Euler equations rather than the Navier-Stokes

equations.

Having an analytical solution for vo, p, p and T, the initial flow field is
established by adding a uniform flow to the above exact solution. Pressure,

vortlcity and velocity contours for the initial conditions are given in Figs.

15-19. The flow is then allowed to develop in physical time. Since the vortex is

translated with the freestream velocity, u_, the location of the vortex is known

at all times and the boundary condition is accordingly updated to the exact

solution at each time step. Non-exact boundary conditions were also utilized in
someof the calculations to assess the appropriate choice of boundary conditions

for BVI problems. In these runs, the total temperature/total pressure/flow

direction inflow boundary conditions and static pressure outflow boundary

conditions were utilized. Most cases were run with three inner iterations per

time step. However, tests were also conducted with two iterations per time step
which, for the sameconditions, gave identical results as those having three

iterations. The numberof iterations at each time step and the value for the

physical time step were chosen based on the analysis performed to establish

criteria for choosing these values. The criteria is described in later sections.
The vortex was allowed to travel 45 radii downstreamand the variation of the

vortex core pressure was registered during the travel. At the end of vortex

travel, plot files were written to produce contour plots.

Central Difference Scheme, First-Order in Time

Case #I

A calculation was performed to determine the flow characteristics associated

with a Lamb-type vortex convecting in a freestream, using the SRA

first-order-in-time, central difference scheme without any inner iteration at each

time step. The purpose of these free vortex calculations is to assess the vortex

preservation capability of the code when applied to blade-vortex interaction

problems. A type "B" grid was used for this case. As described before, the exact

.solution was used to set up the initial condition and the subsequent unsteady

boundary conditions. Figure 20 shows the variation of the vortex core pressure

with the travelled distance of the vortex. From this result it is evident that

the first-order-time-accurate scheme is very dissipative; an improvement is needed

14



for vortex preservation. This is achieved via the second-order unsteady iteratlve

implicit scheme described in the next section. However, the results of the Case I

calculation are qualitatively consistent with those obtained by Rai using the

first-order temporal accuracy Beam and Warming procedure, although the present

results show somewhat less dissipation. It is interesting to note that although

the vortex has lost a significant amount of its strength, the vortex structure is

very well preserved after 45 radii of travel. This is evident from the contour

plots of Figs. 21-24, which are taken at the final point of the vortex travel;

i.e. after 45 core radii of travel.

SecoD4-Order Sn Time odd IteratSvely ImDllcit Scheme

This procedure utilizes second-order accurate time-differencing, together with

inner Iterations at each physical time step. The iteration at each time-step

decreases numerical errors resulting from ADI splitting, time linearization and

implementation of the intermediate boundary conditions. A series of calculations

were performed to determine the most appropriate choices for the parameters

controlling the inner iteration pseudo-time step, the physical time step and the

number of inner iterations. All the calculations were performed on an equally

spaced grid distribution. The problem chosen for these tests was the

two-dimensional vortex in a uniform flow. This is a very relevant case for the

current overall effort and results obtained for this case are expected to have

strong relevance for the blade vortex interaction problem. The effects of these

new parameters on the solution behavior have been studied and are described in the

following.

The effect of this parameter upon the convergence behavior is shown in Fig.

25. In this figure, the maximum residual of the streamwise momentum equation is

chosen to assess the degree of iteration convergence. The residual of each

equation is obtained by summing all the terms in the equation with the exception

of the pseudo time-derivative term; i.e., the _ ( )/@T term. Obviously, when the

residual is zero, a converged solution including unsteady effects is attained.

Since the rate of convergence depends upon the magnitude of the iteration-step,

termed here as the pseudo tlme-step DTAU, it is necessary to study this dependency
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so as to develop an efficient running, time accurate code for application to

complex two-dlmensional or three-dlmenslonal flow cases.

Figure 25 shows the dependenceof convergence rate for the iteration at each

time-step upon the pseudo time parameter DTAU. The calculations were initiated

from an analytic solution and the results of Fig. 25 pertain to the first
tlme-step. As can be seen, once a value of DTAU= 2.0 is reached, further

increase does not significantly improve the rate of convergence.

After the determination of an appropriate iteration pseudo time-step DTAU,a

physical time-step needs to be chosen to minimize the temporal error. The

preservation of the vortex core pressure against different values of physical

time-step (or in terms of CFL number) was chosen to determine the time accuracy

associated with the size of the time-step. It is noted here that a time accurate

solution should preserve the magnitude of the Vortex core pressure as it is

convected toward downstream. Obviously, numerical error will lead to some

dissipative effects; however, it is expected that these effects can be made small.

A series of calculations using different values of CFL were performed to determine

this relationship. The calculations were run for the same total physical time

interval. These runs were made with the three time-level procedure. Figure 26

demonstrates this relationship and can be used to give guidance in choosing an

appropriate value for the tlme-step for a given grid geometry.

(C) Number of Pseudo Time Iterations
.....................................

For a specified pseudo time-step and a specified value for physical time-step,

it is necessary to determine the number of iterations required at each physical

time-step to achieve the desired degree of convergence. This relationship is

shown in Fig. 27. Convergence is defined here as a state at which the per cent

change of each and every dependent variable does not vary, at least for six

significant digits, and the maximum residual of each and every equation reduces by

at least four orders of magnitude during the iteration. It is noted that larger

values of DT, the time step, not only require more iterations to achieve

convergence (Fig. 27), they also introduce larger time truncation error (Fig. 26),

as is expected. Using the iteratively implicit scheme, various calculations were
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performed to assess the vortex preservation capabilities of the newly improved

code and to study the effects of grid spaclng, artificial dissipation, initial

vortex strength and the boundary condition.

Spatial Spacing - Two calculations were performed on grids with different spacing

to study the effects of grid spacing on the vortex preservation. A calculation

was also performed to investigate the effect of the physical time step.

Case #2

The type "A" grid was used for this calculation. Variation of vortex core

pressure versus number of core radii travelled is shown in Fig. 28. It can be

seen that the numerical solution is oscillating, particularly toward the later

parts of the vortex travel. Contour plots of pressure after 45 radii of vortex

travel are given in Fig. 29, which is a picture of a badly deformed vortex. As

mentioned before, spacing used for the grid is Ax = Ay = 1/4.

Case #3

A type "B" grid was used for this calculation. The type "B" grid is identical

to the type "A" grid except its spacing is Ax = Ay = 1/8. All the other

conditions of the calculation were identical to Case #2. The variation of vortex

core pressure with number of core radii is shown in Fig. 28, which indicates a

very stable and accurate solution. It should be noted that there is almost no

perceptible rise in core pressure after 45 radii of travel in this case. Contour

plots of pressure, vorticity magnitude, streamwise velocity and transverse

velocity for this case after 45 radii of travel are shown in Figs. 30-34. In

contrast to the previous case, Ax = Ay = 1/4, this case shows no significant

distortion of the vortex during this travel.

Conditions for this case are identical to Case 3 but physical time-step At

was doubled, i.e., it was increased from At = 0.02 to At = 0.04. This will

correspond to increasing CFL from CFL = 0.16 to CFL = 0.32. The calculation was

performed as an additional confirmation of the results presented in Fig. 26, which
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demonstrates preservation of the vortex core pressure for different values of CFL.

Figure 26 indicates that for CFL= 0.32 the vortex core pressure is still well

preserved. A comparison of the variation of the vortex core pressure with number

of core radii travelled for Case 3 and Case 4 is given in Fig. 35. Contour plots
of pressure, etc. for Case4 were nearly identical to those of Case 3.

Boundary Conditions: Calculations were performed to investigate the effect of the

boundary conditions and the influence of the extents (i.e, the physical distance

between the boundary and the vortex) of the boundaries on the vortex behavior. In

most cases function boundary conditions were applied, i.e. the exact solution

corresponding to the vortex moving in a freestream was imposed on the boundaries.

This is possible since the vortex is translated with the freestream velocity, u_,

therefore location of the vortex is known at all times and the boundary condition

is accordingly applied and updated to the exact solution at each time step.

The function boundary condition discussed in the preceding section could only

be applied to free vortex calculations. These boundary conditions cannot be

applied to the flow calculations involving a blade. "Non-function" boundary

conditions were used in some of the free vortex calculations asan attempt to find

appropriate boundary conditions for the flow situations containing vortex and a

blade. The "non-function" boundary conditions used for free vortex calculations

are such that the total pressure, total enthalpy and flow angle are specified, and

second derivative of pressure set to zero. It should be noted that these are time

dependent unsteady boundary conditions and their values are changed and updated at

each time step. Total pressure is obtained from

Po = P(To/T) 7/(7-I) (19)

where

PO = total pressure

P = static pressure

TO = total temperature

and H0, the total enthalpy, is obtained from

1 v2
H o = h + _ [u 2 + (20)
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where

h = CpT (21)

The specifications of the above boundary conditions require the values of

pressure p, density p, streamwise velocity u and transverse velocity v. These

values are supplied from the exact solution. It should be pointed out here that

the specifications of total enthalpy, total pressure and flow angle amount to

requiring the dependent variables (i.e., u,' v, p and T) to satisfy a system of

algebraic equations; this is different from directly imposing functional values of

these variables, as in the case of function boundary condition.

The boundary conditions used on the downstream boundary are such that the

tlme-dependent static pressure is specified, the second derivative of streamwlse

velocity u, transverse velocity v and the total enthalpy H 0 set to zero. Again

downstrem,_ static pressure is supplied from the exact solution. The

"non-functlon" boundary conditions used on the upper and lower boundaries of the

rectangular grid are identical to those applied on the downstream boundary.

Case #5

This calculation is identical to Case 2 except the type "C" grid is used

instead of the type "A" grid. The boundaries of the type "C" grid are much

further away from the vortex path than those of the type "A" grid (see Figs. 12a

and 14). The results were identical to those of Case 2, indicating that when

function boundary conditions are used, the physical locations of the boundaries

from the vortex have little bearing on the calculated solutions.

C9 eA6

All the conditions of this calculation were identical to Case 3 with the

exception that the alternative boundary conditions were used. Variations of

vortex core pressure versus number of core radii is almost identical to the Case 3

calculation (Fig. 36). Contours of pressure, vorticity magnitude, streamwise

velocity and transverse velocity for Case 6 are shown in Figs. 37-40,

respectively. Pressure contours of this case (Fig. 37) are identical to those of

Case 3. However, an examination of the vorticity magnitude contours (Fig. 38) and
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velocity componentcontours (Figs. 39-40) reveals the influence of the boundary

condition on the unsteady vortex flow behavior. Comparethese figures with those

of Case 3 calculations (i.e., Figs. 31-34) where the exact function boundary

conditions were used. It is clear that use of the alternate boundary conditions

do distort the vorticlty and velocity field in those regions where the field is
relatively weak. For example, as shownin Fig. 39, the vorticity distortion

occurs primarily in the region where _/_max < 0.15. The region where the major
vortex strength occurs stays relatively undistorted. The influence of the

boundary conditions on the vortex flow behavior can be definitely minimized by
extending the boundaries further away from the vortex center, as they would be

with the stretched grids contemplated for the BVI study. It should be noted that

the upper and lower boundaries of the domain for Case 6 were only 3.75 radii away

from the vortex center during the entire calculation, where the vortex core radius

is 1.0.

Initial Vortex Strength

Two cases were conducted to assess the effect of the initial vortex strength

upon the decay rate.

Cases 7-8:

The type "C" grid was used for these calculations. The initial core pressure

of the vortex was 0.95. In all the previous cases the initial core pressure was

0.84. In Case 7 calculations, a central difference scheme with flrst-order

accuracy in time was used, whereas a second-order accurate in time and iteratlvely

implicit scheme was used for Case 8 calculations, The variation of the vortex

core pressure with number of radii travelled by vortex for Cases 7 and 8 is shown

in Fig. 41 and for stronger vortex, having a core pressure of 0.84, in Fig. 42.

It is clear from these figures that the weaker vortex loses less of its initial

strength, i.e., the weaker vortex numerically preserves itself better. This is

consistent with the fact that the degree of preservation depends upon the

truncation error associated with difference schemes, and these errors are

proportional to the flow gradients, which have larger values for stronger vortex.

Pressure contours for Cases 7 and 8 after 45 radii of vortex travel are shown in

Figs. 43-44, respectively.
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Artificial Dissipation - Since all the calculations are at high Reynolds numbers,

it is generally necessary to add "artificial dissipation" terms to suppress

central difference spatial oscillations. Such "artificial dissipation" could be

added via the spatial differencing formulation (e.g., one-sided difference

approximations for first derivatives) or by explicitly adding an additional

dissipative term. In the numerical scheme used in this study, the latter approach

was adopted. When an additional term is explicitly added, the physical

approximation being made is usually clearer than when dissipative mechanisms are

contained within numerical truncation errors. Further, explicit addition of an

artificial dissipation term allows greater control over the amount of non-physlcal

dissipation being added. Obviously, the most desirable technique would add only

enough dissipation to suppress oscillations without deteriorating solution

accuracy. Four cases were run to assess the effect of the "artificial

dlsslpatlrn" on the unsteady vortex flow. In all cases the item AVISC is equal to

Oxi (See Eq. 6) which is approximately an inverse for all Reynolds numbers.

All the conditions for these cases were identical to Case 3 with the exception

of the amount of "artificial dissipation" added. The parameter "AVISC" is a

measure of the amount of artificial dissipation added. The larger the AVlSC

value, the larger the added artificial dissipation. The values used in Cases 9-11

are 0.0, 0.005 and 0.05. The value used in the Case 3 calculation was 0.001.

Variation of the vortex core pressure versus number of core radii travelled by the

vortex for different values of the "artificial dissipation" calculations is given

in Fig. 45. It is clear from these curves that the higher the value of the

"artificial dissipation" the more dissipative the calculation. As discussed

before, there should be only enough dissipation to suppress oscillations without

deteriorating solution accuracy. It should be noted that in the present

calculation the solution remains stable without any added artificial dissipation

throughout this calculation. Contours of pressure and vorticity magnitudes after

45 radii of travel for calculations each having a different value of "artificial

dissipation" are given in Figs. 31-32 (AVISC = 0.001) and Figs 46-51. These

contour plots indicate that the vortex shape is very well preserved after 45 radii

of travel, despite the fact that for higher values of "artificial dissipation" the

vortex has lost more of its strength.
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In all the cases discussed before, since a Lamb-type vortex was used, the

Euler equations were solved. A calculation with an identical condition to Case 3

was performed, except instead of Euler equations, Navier-Stokes equations were

solved. The results were identical to Case 3. This is expected since, in free

vortex calculations, in the absence of walls the contributions of the viscous

terms are very small.

Summary

The original form of the SRA Navier-Stokes code which was used for this study

was a central difference scheme, first-order accurate in time. It was shown to be

very dissipative. The code was further developed to be second-order accurate in

time and to do multiple iterations at each time step. These improvements proved

to increase the time accuracy of the code significantly. Free vortex calculations

demonstrating this aspect of the improvements were presented. Fig. 52

demonstrates vortex preservation capabilities of the original SRA central

difference scheme code and the improved second-order accurate in time and

iteratively implicit scheme code. Results of Rai's fifth-order-accurate upwind-

biased scheme are also presented in this figure for comparison. Numerous test

cases were performed to assess the effects of grld size, initial vortex strength,

boundary conditions and artificial dissipation on the unsteady free vortex flow

calculations. The calculation conditions and the results are summarized in Table

i. It can be noted from Fig. 52 that the inclusion of the second order accurate

scheme, together with the use of iteratively implicit techniques greatly increase

the time accuracy of the solution and the numerical simulation and preserve the

vortex strength and structure for the duration needed for the blade vortex

interaction study.
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IV. TWO-DIMENSIONAL BLADE VORTEX INTERACTION

The second case considered is that of a two-dimenslonal blade vortex

interaction. The isolated vortex study showed the proper choice of time step,

iteration step, iteration number, etc. required to preserve the vortex strength

and radius. However, this study does not address resolution and artificial

dissipation issues for the BVI problem. These issues were addressed in a

two-dimensional BVI simulation.

Grid, Boundary Conditions and ArtificSa_ Dissipat$on

Fig. 53 illustrates the grid distribution used for the BVI simulation. The

total number of grid points is 144 x 118. The inflow boundary is located at 7

chords from the blade leading edge while the outflow boundary is located at 5

chords from the blade trailing edge. Based upon the isolated vortex study the

distance between the top boundary and the chord line of the NACAO012 airfoil was

set at 5 chord lengths. The geometric configuration is symmetric about the chord

line. Along the inflow boundary, the total pressure, the total temperature and

the inflow angle are specified. The pressure is obtained by extrapolation. Along

the outflow, top and bottom boundaries, the static pressure is specified, the

velocity and the total temperature are obtained by extrapolation. On the blade

surface, non-slip conditions are imposed. The density is obtained by solving the

continuity equation and the surface temperature is specified as the constant, free

stream total temperature. When the vortex is introduced into the transonic flow

field at a point upstream of the blade, the boundary values must take into account

the existence of this vortex, e.g., the inflow angle will not be zero and

generally is not uniform along the inflow boundary. In addition, as the vortex is

convecting towards the blade, these boundary values are changing with time. For

the present simulation, they are taken from the composite "vortex in a

free-stream" solution.

A spatially varying artificial dissipation was used in the BVI calculation

presented here. Upstream of the blade AVISC was set to 0.005. Based upon the

vortex preservation studies this should keep the vortex decay within allowable

levels prior to the interaction. However, it should be recognized that the vortex

preservation studies were done on a uniform grid whereas the present calculation

is done on a non-uniform grid. Downstream of the airfoil leading edge station the
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value of AVISCwas set at 0.05 except in the immediate vicinity of the leading and

trailing edge locations where it was set to 0.5. The relatively high value of 0.5
was required due to the highly stretched, highly skewedgrids and the marginal

resolution of the flow in these regions. The regions of different AVISCvalues
were blended at boundaries to avoid discontinuous changes in the artificial

dissipation.

Although this procedure for specifying numerical dissipation does put a higher

than desired level in the immediate vicinity of the leading and trailing edge

regions, it is necessary to suppress oscillations in these regions. This same

procedure has been used in a variety of airfoil and cascade studies and has given

good agreementwith experimental data for a wide variety of cases, e.g. Shamroth

(1985), Weinberg et al. (1986) and Shamroth et al. (1988).

Flow Parameters

The reference length is the chord length of the blade and the reference flow

conditions are the free stream condition with M_ = 0.8 and Re = 1.0 x 106 . The

background flow is a steady transonic flow with shock waves standing in the middle

of the blade. Furthermore, the flow is symmetric about the chord line; hence, the

lift coefficient (CL) is zero. The surface pressure distribution of this

background flow is shown in Fig. 54.

The dimensionless strength and core radius of the vortex are --1.6 and 0.2,

respectively, where the minus sign indicates that the vortex has a clockwise

sense. The initial location of the vortex center is at a point 5 chords upstream

of the airfoil leading edge (xv = --5.0) and 0.26 chords below (Yv = -0.26). The

calculation is carried out from t = 0 to t = 8 with constant time step At = 0.005.

It is noted here that the vortex core arrives at the blade leading edge when

t = 4.95, which indicates an average core velocity of 0.99 v_.

Results and Discussion

The time histories of the aerodynamic coefficients during the blade-vortex-

shock interactions are described in Figs. 55-57. It should be noted that the

small amplitude variations occurring for t up to 1.0 are due to the impulsive

introduction of the vortex into the background flow, and these small amplitude

oscillations have been damped out long before the onset of significant blade
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vortex interactions. Furthermore, these coefficients are evaluated in terms of

static pressure; they do not include the contribution of viscous stresses. The

lift coefficient (C L) and the quarter-chord pitching moment coefficient (CM) are

shown in Figs. 55 and 56, respectively. It should be noted that the background

flow is a nonlifting case and that any llft generated during the interaction is

induced by the vortex. Since the vortex flow is revolving in the clockwise

direction, when the vortex is approaching the blade, it induces nonuniform and

unsteady velocities that result in negative angles of attack at the blade. This

influence changes to increasing angles of attack after the vortex has reached the

blade. Severe load variations occur during the time period from t = 4.0 to

t = 6.0; i.e., when the vortex is within one chord length of the blade leading

edge. During this period of time, C L and C M change their signs, while C D

undergoes rapid variation exhibiting two distinct temporal maxima (Fig. 57). The

coefficients have not yet returned to their undisturbed value at t = 8.0

indicating that the interaction is still affecting the flow. This is consistent

with the results of Srinivasan et al. (1986).

The interaction between the vortex and the blade with a shock are further

elucidated in terms of the instantaneous static pressure distribution at several

selected time stations. Fig. 58(a) gives the pressure contours over the entire

computational domain at t = 0, while Fig. 58(b) gives the distribution of static

pressure coefficient on the blade surface at t = O. This is the starting flow

field. As the vortex convects towards the blade, the upper surface shock moves

in the upstream direction, its strength is decreasing and the extent of the

associated supersonic pocket also is reducing. On the other hand, the lower

surface shock moves in the downstream direction with increased strength. In

addition to the motion of the shock waves, pressure difference between the upper

and lower surfaces start to build up. These generic features are illustrated in

Fig. 59(a) and (b), which are obtained at t = 2.0. The outer pressure contours on

the aft region of the blade shows some "wiggles"; however, this is in a region of

nearly uniform pressure and, therefore, the presence of these "wiggles" is not

significant, but represents small changes in a nearly uniform field. The flow

field at t = 4.0, i.e., when the vortex core is about one chord length upstream of

the blade, is shown in Fig. 60(a) and (b). The upper surface supersonic pocket

practically has disappeared. The lower surface shock wave becomes stronger and is

located in a further downstream position; at the shock's root the flow shows signs

of separation. In addition, a significant transverse pressure gradient exists in
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the leading edge region. At t = 4.5, this leading edge transverse pressure

gradient becomes the dominant feature of the interaction. In addition, the lower

surface shock stops moving towards the trailing edge, in spite of the fact that

its strength is still increasing. These features are depicted in Figs. 61(a) and

(b). When t = 5.0, the vortex core 'hits' the blade, the averaged Mach number

inside the lower surface supersonic pocket increases to approximately 2. Most of

the disturbances on this surface will propagate downstream until reaching the

shock. Part of thedisturbance is able to leave the supersonic pocket near the

outer region of the shock. However, the remainder seems to build up at the root

of the shock, as indicated by Fig. 62(a). At the same time, high pressure

disturbance starts to be released from the upper surface of the leading edge, as

indicated by Fig. 62(a). The state of the flow at this moment is very volatile,

within a short period of time, this process of disturbance build-up has collapsed,

as illust'ated by Fig. 63 at t = 5.5. The shock is no longer an approximately

normal shock but has an oblique leg which intersects the blade wall upstream of

the intersection location at t = 5.0 (Fig. 62(a)). The emission of a high

pressure pulse from the upper surface of the leading edge is evident from Fig.

63(a); this high pressure pulse then propagates upstream in a domain including the

frontal region of the entire leading edge (see Fig. 64(a)). Between this frontal

high pressure region and the lower surface shock wave, a low pressure pulse is

propagating towards the lower outer boundary. Figs. 62(b), 63(b) and 64(b)

illustrate the collapse of the disturbance building up process and the subsequent

relaxation of the strength and the location of the shock wave on the lower

surface. The general features of the flow at t = 6.0 are: the existence of a

supersonic pocket on the lower surface, significant flow separation originating

at the root of the shock, the appearance of vortex remnants near the blade

trailing edge, and the development of supersonic flow on the upper surface.

Subsequently, the lower surface supersonic pocket continually reduces its extent

and eventually disappears by t = 8.0. The lower surface shock moves towards the

leading edge with continually diminished strength and then vanishes. At t = 8.0,

the vortex remnants have been further convected downstream. The flow on the lower

surface does not exhibit any appreciable separation and is entirely transonic.

Furthermore, about 70% of the upper surface is covered by a supersonic pocket,

with compression waves appearing near the trailing edge of the blade. It is clear

that the interaction is a strong one and the vortex path particularly, when the

vortex is near the blade is influenced by the blade and the interaction. The
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local velocity changes significantly during the interaction. This makes

techniques based upon assumedvortex position or shape unlikely to provide an
accurate simulation.

The radiation of pressure pulses from the leading edge region as a result of
the blade-vortex interaction is further investigated in terms of the scaled

pressure disturbance. In the two-dimensional linear far field, the amplitude of
propagating waves should be proportional to i/r ½, where r is the distance to the

origin of the disturbance. The scaled pressure disturbance is obtained by
subtracting the steady-state pressure background value from the instantaneous BVI

solution and then dividing the difference by the far upstream value of pressure.
The result is then multiplied by r _, where r is the distance to the leading edge.

Fig. 66 defines the points at which the time histories of the scaled disturbances

are recorded and presented in Figs. 67 (a), (b) and (c). These points are taken
as grid points leading to somevariation in 8. The first peak, I, is due to the

interaction between the incoming vortex and the leading edge, when the vortex

center is within one chord length of the blade. The valley, II, is associated

with the passage of the vortex core through these points, and the peak, III,

originates from the upper surface of the leading edge, after the vortex case

'hits' the blade, as described before. The results of Fig. 67 shows the

simulation to give i/r h scaling only approximately. Points #I and #2 satisfy the

scaling reasonably well. The results for point #3 show the same shape but the

level of the maximum and minimum distributions are significantly more negative

than points 1 and 2.

The lift coefficient time history of the present effort showed the same

qualitative features as that obtained by Srinivasan, McCroskey and Baeder (1986)

and Sanker and Tang (1985) and the moment coefficient showed qualitative

similarity with that of Srinivasan et al. (1986). Surface pressure distributions

also showed qualitative agreement with the results of Srinivasan et al. (1986) and

Rai (1987) as the shock strength on the upper surface decreased and that on the

lower surface increased during the interaction. Finally, the details of the

acoustic wave leaving the blade during the interaction show considerable

similarity with those of Rai (1987).
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V. THREE-DIMENSIONALBLADEVORTEXINTERACTION

The final case considered is that of a three-dlmensional blade vortex

interaction. The two-dimensional isolated vortex study clearly indicates the need

for appropriate grid resolution to avoid unacceptable levels of numerical

dissipation in the vortex. This need to maintain high grid resolution even in the

three-dlmensional case influenced the choice of case to be studied. Although

numerical simulation of a blade with a tip is the eventual goal, inclusion of a

tip would require resolution of an entire new set of length scales associated with

the tip geometry and the local tip flow; this would increase the numberof grid

points required beyond what is practical for this effort. Therefore a simpler
problem which contains the basic three-dimensional flow field physics was chosen

for the present investigation.
A skech of the case to be considered is shownin Fig. 68, which shows a

periodic vortex initially consisting of straight line segments in a plane parallel

to the airfoil midline. Since there is a natural symmetry, the computational

domain is reduced to the region between spaced spanwise symmetry planes and,

further, since no tip is included an equally spaced spanwise grid can be used.

This allows use of a computational grid consisting of 21 equally spanwise planes

with each plane containing 144 x 118 points for a total of 356,832 grid points in

the computational domain. The specific configuration chosen had an angle _ of 20

degrees, a distance d of 2.0 chords and points a and b were 5.0 and 4.27 chords

upstream of the blade, respectively.

The equations solved are the three-dimensional Navier-Stokes equations as

given in Section II. These solve the equations in an inertial frame. Extension

to a rotating frame can be madeeither by having the wing move in this inertial

frame as was done in the dynamic stall study of Shamroth (1985) or by adding

centrifugal and Coriolls terms. This latter approach was used at SRAin a

three-dimensional rotor-stator interaction study using the samecomputer code as
used here by Gibeling et al. (1990). It is this latter approach which would be

recommendedif the rotational effects were to be included. Although this

additional capability was not available at the initiation fo the present study, it

is now available and adds little complexity to the numerical solution. Obviously

boundary conditions must be written in the rotating frame but this should be

straightforward.
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Having specified the initial vortex geometry, it is necessary to create

compatible velocity, density and pressure fields. Considering a vortex llne

segment, as shown in Fig. 69, the induced velocity at a point P due to this llne

segment is given by:

[ [ ][ - -]
--. r I • r 2
AV' = F 1 r I + r 2 1

4_ s2r 2 rlr 2

where

r I & r 2 :

r m :

s :

F •

"relative" position vector of P defined from the end points to P.

minimum distance of P from the vortex line.

distance between the end points "i" and "2" of the line

element.

a constant and its sense is consistent with a vortlcity vector

directed from "i" to "2"

-.---e

The influence of the core is accounted for by multiplying AV by a factor

2 [, .]fcore = rm / rm + rc

where rc is the core radius and it is the location at which the tangential

velocity has its maximum. Induced velocity due to the overall geometry consisting

of many line segments is given by:

v, = (23)

The number of filaments is chosen such that the induced velocity field satisfies

the symmetric condition for the flow in the computational domain. Experience

indicates that, by placing approximately 30 or more vortices on each side of the

representative vortex, an excellent approximation to the spanwise periodicity

required by an infinite number of vortices can be achieved. Fig. 70 shows the

overall geometry and the relative position of the vortex and the blade. It should

be noted here that the induced flow field associated with the filament present in

the computational domain contains not only the dominant contribution of this

3O



vortex but also the contributions of all the other vortices in the same array.

The vortex model constructed according to Eq. (22) and illustrated in Fig. 70 is

to be used only in setting the initial flow condition of the simulation. The

subsequent flow development is governed by the solution of the Navler-Stokes

equations.

The composite flow will consist of the background flow and the variation from

that background flow due to the initiation of the vortex filament. The presence

of the blade wall is incorporated into this initial flow specification by

multiplying the induced velocity field _' by tanh (Ed/6) where:

and

thus

d is the distance to the wall

is the von Karman constant

6 is the boundary layer thickness

u' ----_' tan h (_d/6) (24)

and u' satisfies the no-slip condition.

The composite velocity field is:

U = U b + U' (25)

V = V b + V' (26)

W = W b + W' (27)

where Ub, vb and wb are streamwise velocity, spanwise velocity and transverse

velocity of the background flow; i.e., the flow without a vortex.

The initial pressure field of the composite flow must be evaluated in such a

way that it is consistent with the prescribed composite velocity field. Two

approaches were attempted. Under the first approach the temperature was assumed

to be that of the background flow.

T = T b (28)

The strategy was to find the density (p) and pressure (P) of the composite field

such that they are consistent with the velocity field given by Eqs. (25) (26)
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and the temperature field given by Eq. (28). This was done by initially assuming

P = Pb

where Pb is the background density, and then integrating the suitable component of

the momentum equation in its steady form

[ ° ]i.e. _=0

to obtain the pressure field. Utilizing this pressure, temperature (T) and the

equation of state, p can be updated. Using the updated p and integrating the same

component of the momentum equation, a new pressure (P) is obtained. Convergence

of this iteration process implies that a consistent P, p field is achieved.

Although a convergent solution could be obtained the numerical truncation error of

the integration process was excessive and an alternative numerical specification

was sought.

Under this alternative the flow field was constructed on a spanwise plane by

spanwlse plane basis. At each spanwise plane the vortex was assumed to be a Lamb

vortex and the pressure, density and temperature found via Eqs. (ii) - (18).

Although this does represent an approximation, it did provide an initial starting

flow field from which the computation was able to proceed without any significant

discontinuity.

The initial pressure field is shown in Fig. 71. A top view of the pressure

contours is shown in the upper portion of the figure with the pressure contours

due to the vortex being on the left hand side of the figure and that of the blade

on the right hand side of the figure. The inclination of the vortex relative to

the blade is evident. The lower portion of the figure shows a perspective plot

with contours plotted in three spanwise planes. It should be noted for future

reference that the vortex is initially closest to the blade at LY = 21, and

furthest upstream from the blade at LY = I. The initial pressure and Math number

fields through the center spanwise plane, LY = II, are shown in Fig. 72 and Fig.

73. There is no spanwise pressure variation for this initial condition.

The remaining figures present either pressure contours or Math number contours

at a specific time in three spanwise planes or surface pressure distributions on

the blade. When figures showing contours are vertical, the
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LY = I plane which initially has the vortex at its furthest upstream location is

at the top of the figure, LY = ii is in the middle and LY = 21 is at the bottom.

When presented horizontally, LY = 1 is on the left.

Figure 74 shows pressure contours at t = 1.23, At = 1 is the time a particle

at undisturbed freestream velocity traverses a distance of one chord. At all

spanwise locations the movement of the upper shock forward and the lower surface

shock backwards is evident. The vortex centerline which was initially in a plane

parallel to that of the blade midspan has migrated out of that plane, with the

vortex core location being at progressively higher locations as the spanwise

location proceeds from plane LY = 1 to plane LY = 21; i.e., the portion of the

vortex for that downstream rises due to the self-induced motion as is expected

(e.g. Hama and Nutant, 1963). The result is an interaction where the vortex is at

angle to the blade and is no longer parallel to the blade centerline which

changes vortex location relative to the blade as a function of span.

Figures 75 and 76 present pressure and Mach number contours at t = 2.838. At

this time the upper surface shock has nearly disappeared at all spanwise

locations. The height of the vortex core clearly varies with spanwise location

and a strong shock remains on the lower surface with the shock appearing to be

significantly stronger than that shown at t = 0.0, Fig. 72. In all cases the

contours are quite clear and free of oscillations. A composite surface

pressure plot consisting of surface pressure plots at 7 different spanwise

locations is shown in Fig. 77; no significant spanwise pressure variation is

observed at this time. Pressure and Mach number fields at t = 4.139 are

presented in Figs. 78 and 79. At this time the interaction is very strong at all

streamwise locations. The interaction at LY = 21 has proceeded the furthest. A

composite surface pressure plot is shown in Fig. 80; at this time significant

surface pressure differences are evident with the highest suction peaks occurring

at the LY = 21 location. This is the spanwise location at which the vortex is

closest to the blade and at which the vortex is highest. The shock location

varies mildly with span; however, the shock strength is approximately constant

with span. The vortex center at the LY = 21 plane has nearly reached the blade

leading edge at this time. The fields at t = 4.56 are presented in Figs. 81 and

82. At t = 4.56 the three-dimensionality of the interaction is very clear from

both pressure and Mach number plots. By t = 4.56, the shock on the lower surface

at the LY = 21 plane has moved forward whereas that on the LY = 1 plane remains

aft on the blade. The surface pressure distributions indicate shock bifurcation
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at somespanwlse locations. As in the two-dlmenslonal case, high pressure pulses
are being released from the upper surface of the leading edge at all spanwlse

locations at this time. The pulses are most apparent at the LY = 21 plane;

however, they are apparent even at the LY = 1 plane. A composite pressure plot is

shown in Fig. 83.

At time, t = 4.7, the interaction is very strong over the entire spanwise

extent of the domain. The pressure contours are shown in Fig. 84 and the Mach

number contours in Fig. 85. Based upon these figures the lower surface shock

system on the LY = 21 plane has moved considerably forward from its most aft

position and continues to sharpen in the freestream. The LY = 1 system is a

single shock on the aft portion of the blade. Figs. 86-88 show details of the

contours. These plots were created from a culled plot file hence the somewhat

discontinuous appearance of the contours. Of particular interest is the vortex

interaction induced shock bifurcation shown in Fig. 88. This represents the

spanwlse plane where the interaction has proceeded furthest. The contours at LY =

II in Fig. 87 show bifurcation starting, whereas those in Fig. 86 show no

significant sign of bifurcation. Pressure and Mach number fields at t = 5.157 are

given in Figs. 89 and 90. At this location the effects of three dlmenslonality

are significant, as can be seen by comparing Figs. 81 and 89. Figure 81 presents

results at t = 4.56, at which time the vortex at spanwlse plane LY = 21 has Just

passed the airfoil leading edge. Figure 89 presents results at t = 5.15, at which

time the vortex at LY = 1 has just passed the leading edge. At LY = i, t = 5.15,

(Fig. 89) the s_hock shows a clear bifurcation which is not present at LY = 21, t =

4.56 (Fig. 81). This is likely to be an effect associated with the three

dimenslonality. Details of the lower surface pressure contours at t = 5.157 are

presented in Figs. 91-93, where the different shock locations and strengths at the

various spanwlse locations are apparent. A composite surface pressure plot is

given in Fig. 94 and lower surface contour plots are shown in Fig. 95.

Plots of blade lift, drag and moment coefficient as a function of time are

given in Figs. 96-98. Although these are qualitatively similar to their

two-dimensional counterparts, they are affected by the variation of vortex height

with spanwise location. Surface pressure contours on both the upper and lower

surfaces are shown in Figs. 99-107.

The general qualitative picture obtained for the three-dimensional interaction

is similar to that previously obtained for the two-dimensional interaction as

modified by the inclination of the vortex relative to the blade leading edge and

34



the migration of the vortex core line so that it does not lle on a plane parallel

to the blade midplane. As the vortex approaches the blade, the core location at

one spanwise boundary rises and that at the other spanwise boundary falls. At all

spanwise locations the upper surface shock moves forward, its strength reduces and

the associated supersonic pocket reduces. The extent of the interaction at any

specified time is a definite functlon of the spanwise location. However, although

at any spanwise location the general flow development is similar to that of the

two-dlmenslonal case; three-dimensional effects influence the flow details. The

lower surface shock moves aft with increasing strength. As the vortex core moves

closer to the airfoil the upper surface shock system disappears. All these

interactions, as well as the ones discussed subsequently, occur first in the

LY = 21 plane, which is the plane in which the vortex is initially closest to the

blade. During the interaction the lower surface shock system reaches a maximum

downstreTm position and then moves forward and sharpens. High pressure

disturbances appear at the leading edge and propagate upstream. As the

interaction continues, the shock shows a bifurcation with the appearance of an

oblique leg, which produces a diffuse pressure rise at the blade surface; however,

the shock remains very sharp in the outer flow removed from the blade. The

pressure pulse continues to propagate in the upstream direction.

The present BVI simulation is based upon a solution of the full Navier-Stokes

equations. The only previously published viscous solution to this problem to

the present authors' knowledge is that of Srinlvasan and McCroskey (1989) based

upon the thin shear layer approximation to the Navler-Stokes equations. The

Srinivasan and McCroskey effort considered unsteady interaction of a rotor with a

vortex with the equations solved in an inertial frame with the rotor being

represented as a moving no-slip/no through flow boundary. A presecribed vortex

formulation was used. The present approach uses the full three-dimenslonal

Navier-Stokes equations without any thin shear layer assumption and does not split

the velocity field into a prescribed vortex portion and a background flow.

However, the present effort considers a simpler problem, that of a vortex

encountering a blade section of finite spanwlse extent in an inertial frame.

Therefore, no direct comparisons of the results of the two efforts can be made.

Based upon the three-dimensional simulation of the present effort certain

conclusions can be made. For vortices of modest angle to the blade, the present

case was 20 ° , the three-dimensional interaction is qualitatively similar to the

two-dimenslonal interaction on a section by section basis. However, differences
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do exist as details of the flow field at any spanwise locations for which the

interaction had occurred at any earlier time. This effects the details of the

shock shape, shock location, surface pressure distribution and field pressure

distribution. Therefore, although qualitative conclusions can be drawn from

two-dlmenslonal simulations, a need for detail or quantitative conclusions require

a three-dimenslonal simulation. This conclusion is in basic agreement with that

of Srinvasan and McCroskey (1989).

CONCLUDING REMARKS

A Navier-Stokes analysis has been applied to the problem of two- and

three-dimensional blade vortex interactions. The two-dimenslonal interaction

studies have shown the ability of an iterative implicit procedure using three

point central differences to provide a highly non-dissipative solution procedure.

Results were obtained which showed details of the flow including the propagating

pressure disturbances resulting from the interaction. The results showed many of

the known physical features and gave good qualitative correspondence with other

analyses. The three-dimensional study considered a blade vortex interaction with
o

the vortex initially at 20 incidence to the blade. A solution was obtained

showing general features of the two-dimensional interaction with modifications due

to the angle between the vortex and the blade. As in the two-dimensional case,

pressure disturbances were observed leaving the blade leading edge. Details of

the simulated flow physics are presented in the appropriate sections of this

report.
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SYMBOLS

a

CD

CL

CM

Cp

D

d

DT

D TAU

dx i

fcore

h

H0

LY

P

Q

r

T

t

u i

U, V

ub , vb , wb

V

vo

xi

y+

F

Ax, Ay

AX i

g

Vortex core radius

Drag coefficient

Lift coefficient

Moment coefficent

Specific heat

Damping coefficient

Distance from wall

Time step

Pseudo time step parameter

Artificial dissipation coefficient

Velocity damping factor in vortex core

Enthalpy

Stagnation enthalpy

Mixing length

Spanwise plane number

Pressure

Heat flux vector

Radial distance

Temperature

Time

Velocity component in ith direction

Cartesian velocity component

Background flow velocity components excluding contribution of

vortices

Velocity

Tangential Velocity

Cartesian Coordinate

Dimensionless coordinate normal to wall

Circulation

Boundary layer thickness

Grid spacing

Grid spacing in ith direction

Turbulence dissipation

Von-Karman constant
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P

Viscosity
Stress tensor

Density

Relaxation time step coordinate

Meanflow dissipation

Dependentvariable

Subscriots

b

o

OD

Background value

Stagnation value

Far upstream value
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Fig. 58a Static Pressure Contours (t-0)
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Fig. 58b Surface Cp (t=0)
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Fig. 59a Static Pressure Contours (t=2.0)
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Fig. 60a Pressure Contours (t=4.0)
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Fig. 61a Pressure Contours (t=4.5)
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Fig. 62a Pressure Contours (t-5.0)
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Fig, 63a Pressure Contours (t=5.5)

-2, I00

-1.75_ -

-1._08 -

-1.062 -

-0.715 -

-O.369

-0.023

Cp
O. 323

0. 669

1.015

1. 362

I.708 -

2.05_I -

2. _t00
-0,

I I I I I I I I I- I

.... UPPER SURFACE

-- LOWER SURFACE

I I l I I _L 1_ I I ] 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1

X

Fig. 63b Surface Cp (t-5.5)

136



Fig. 64a Pressure Contours (t-6.0)
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POINT # r 8
-2

1 2.31 x 10 28.76 °
-2

2 5.40 x 10 25.71 o

3 10.73 x 10 .2 26.01 o

Fig. 66 Points where Scaled Pressure Disturbance are Calculated.
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Figure 69 Vortex Filament.
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Figure 70 Overall Geometry.
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